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Asymmetric MRI Magnet Design Using a Hybrid Numerical Method
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This paper describes a hybrid numerical method for the design
of asymmetric magnetic resonance imaging magnet systems. The
problem is formulated as a field synthesis and the desired current
density on the surface of a cylinder is first calculated by solving a
Fredholm equation of the first kind. Nonlinear optimization meth-
ods are then invoked to fit practical magnet coils to the desired
current density. The field calculations are performed using a
semi-analytical method. A new type of asymmetric magnet is
proposed in this work. The asymmetric MRl magnet allows the
diameter spherical imaging volume to be positioned close to one
end of the magnet. The main advantages of making the magnet
asymmetric include the potential to reduce the perception of
claustrophobia for the patient, better access to the patient by
attending physicians, and the potential for reduced peripheral
nerve stimulation due to the gradient coil configuration. The
results highlight that the method can be used to obtain an asym-
metric MRI magnet structure and a very homogeneous magnetic
field over the central imaging volume in clinical systems of ap-
proximately 1.2 m in length. Unshielded designs are the focus of
this work. This method is flexible and may be applied to magnets
of other geometries. © 1999 Academic Press
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nerve stimulation due to the gradient coil configuration. Th
constraints placed on the new magnet were that the over
length of the magnet be less than 1.25 m with a free bore
about 1.0 m and the dsv at about 0.1 m from the end of tt
magnet coils. Furthermore, the design must ensure suital
safety margins for the use of niobium—titanium superconduc
tors and generate 1.0 T with suitable homogeneity over at lec
a 45 cm dsv.

The challenge in designing a compact asymmetric magnet
the retention of high homogeneity conditions over the imagin
volume, as magnet homogeneity is strongly dependent on t
overall length of the coil structure. Another parameter strongl
affecting homogeneity is the relaxation facter € d/R) (see
Fig. 1) that defines as a ratio the distandg ffom the end of
the coil to the beginning of the dsv on axis with free bore radiu
(R). Consequently, the smalley, the more difficult it is to
obtain the homogeneity requirements in the dsv.

In this paper, a new hybrid numerical method is proposed t
determine the final coil design. The method combines th
inverse current density approach previously used in gradie
(16, 17 and shim coil 18) designs and nonlinear optimization
numerical techniques. The field calculation is performed by
semi-analytical method, which has been developed by Forb

A major specification of the static field in magnetic resos¢ 5 (20). It is well known that there is no unique solution for
nance imaging (MRI) is that it has to be homogeneous over &y, icylar magnet structure; therefore, an inverse approach
diameter spherical imaging volume (dsv). The errors are UStcurrent density method was used to find a suitable curre

allydl_esT than 10 ppm rms over ﬁ 45-50 (cj:m dsv. Con_velmio’%nsity profile for a specified total magnet length, dsv size ar
medical MRI systems are typically around 1.6-2.0 m in leng sition, and required field strength. This distribution is used &

with free bore diameters in the range 0.8—1.0113. Nor-~ starting point for the coil block design, and then a nonlinez

mally, tthe ma?netffhsynt]mettrlc a'\r/lld dSVf Itsh Iocattled N e timization method is used to refine the configuration of th
geometric center of the struclure. Vany of the early magnr%agnet. The primary objective was to develop new designs fi

designs, in theory, were t_)a_sed_on the V\_/ork of Garrbed\ ﬁ mpact asymmetric MRl magnet structures with relaxatio
Recently, a stochastic optimization technique was successfl,;éﬁyltorsy = 0.20, s0 that the dsv region could be located a

used to design symmetric, compact MRI magna#.( close as possible to the one end of magnet.

In this work, the primary objective was to develop new The first step in the design process is to find the sourc

designs for compact asymmetric MRI magnet structures, so . C . .
. : current density, which is constrained to the surface of a cylir
that the dsv region could be located as close as possible to 8ne

end of magnet, The main advantages of making the magne{ of fixed length. The current densitywhich must produce

asymmetric include the potential to reduce the perception %ethomogeneous magnetic field over the dsv, can be related

claustrophobia for the patient, better access to the patientsrg/eCIfIC magnetic field distribution by an integral equatior

attending physicians, and the potential for reduced periphe? ained from the Blot—Savar_t lad). In a conv:_ent|onal M.RI
magnet design, the problem is presented as Fig. 1, an air-cot

'To whom correspondence should be addressed. E-mail: stu&®il With an infinitely thin winding tape carrying current. The

crozier@cmr.ug.edu.au. integral equation has the expression
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X ical technique is required, and here we present brief details
J®) - the asymptotic regularization metho2f. A general regular-
/ ized solutionJ is given by the solution of the following
optimization problem:

Z©) min|AJ — B2 [3]

The direct solution of [3] is generally numerically unstable
Asymptotic regularization is obtained by solving the system ¢
differential equations

dJ(t)
dt

L

= —ATAJ(t) + AB,, [4]

FIG. 1. An air-cored coil with an infinitely thin current density layer in a
fully symmetric magnet system. whereAT is the transpose matrix @, andt is an independent
variable. The solutiod asymptotically converges to the solu-
| tion of Eq. [3], ast — <.
J K(z, £J(§)dé = B,. [1] The next step is to find the coil structure of the MRI magne
. design. The coil has to be partitioned into a number of block:
and each of them has a rectangular cross section. Initially, tl
For computational efficiency, this approach only considers théimber of the blocks are determined by number of oscillatior
magnetic field distribution along th&-axis. Therefore, the in the solutionJ. Once an initial descretization of the coil
kernel function iskK(z, &) = wR¥(2(R* + (z — §?)%?). geometry has been made, basedJorthe structure must be
Equation [1] is a linear Fredholm integral equation of the firsgfined. In principle, the magnetic field produced by a coi
kind, which can be represented by the discrete system f§#ving many turns of wire can be computed in the same we
algebraic equations as bhefore. All that is required is to apply the Biot—Savart law
and integrate along each turn in the (short) solenoids. Howeve
. if a very large number of turns are involved, this procedur
D AJ =B, j=1,2,....m, 2] becomes prohibitively expensive for optimization. An alterna
tive approach, which was proposed by Forle¢sl. (20 and
references therein), is used for computing the magnetic fie
whereA;; is am X n matrix which is generated from the kerneprOOIUCed by a circular coil t,hat contains a large number' ¢
function. Whenm > n, there is more information than un-turns wound onto a solenoid of rectangular cross sectio
knowns and the problem is over specified. Therefore, the magnetic field analysis is given as

In general, numerical solution of [2] is a difficult task,
because this problem belongs to the class of so-called ill-posed
problems, and direct solution of the system generally yields a
vector J whose components will oscillate wildly around the

i=1

N
B(r1 61 Z) = E Mrj(rl 61 Z, R]! gjy ij h])lof

j=1

corresponding values of the solution of [1]. A special numer- + My(r, 6, z, R, &, w;, h)lez, [5]
J (A/m) Error (ppm) Bz (T)

1.1 25 1.05
2 1
1.5 0.95
1 0.9
05 0.85
08
¢ 0.75
05 07
! 065
5 06
2 ! 055

01 05 5 05 Z(m) 277 ¢ o1 0z Z(m) 955 55 5 05 +Z (M

(a) (b) (c)

FIG. 2. A solution for a symmetric magnet: (a) the normalized current density distribution, (b) the error within dsv Braxi® and (c) the normalized
B, field distribution onZ-axis.
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N

J
e fi(x) = 2 My(ris Xra-1, K=1, ..., HXaniy

j=1

. [7]
-B,(r)=0, i=1,2,...,m

Z )

with n unknown variables. In generah = n is chosen so that
Eq. [7] is an over-determinate system. This nonlinear optim
zation problem can be solved as a nonlinear least squat
problem; that is, leD be a solution spacé; D C R" — R",
f=(f,f ..., f.)', and define a function as

®(x) = LT (0)f(x), ®:DCR"— R.L 8]

FIG.3. Anair-cored coil with an infinitely thin current density layerinan o .
asymmetric magnet. This function is the measure of the total difference between tt

target field and the field produced by the coils. The optimize
X can be obtain by solving Eq. [8] for the minimudn value,

whereN is the total number of the coilsr (6, z) is the field thatis

location, R;, &;, w;, h;) are coordinates of the colJ, andM,

are the kernel of the summation that can be found2i).( min ®(x) = min £ fT(x)f(x). 9]
For nonlinear optimization design, the first step is to define XED XED

a target fieldB, in a control region that can be chosen as the

number of sample point8,(r;, 6, z). Then, the problem The Levenberg-Marquardt metho2ll is used that gives

becomes to search a solution sekot (R;, &, w;, h;; j = 1,

2,...,N; I,), wherex is n dimensional vectorr{ = 4N + [DFT(x% DF(x¥) + ayl Ipe(a) = —DFT(x9F(x%) [10]
1). These solutions produce a fie] that match the target - )
field in the control region, that is X=X APl ), [11]
where
N
B,i(ri) = 21 Mzi(Fi Xieagi-1p K=1, 0o B Xanen [ of, of, f)
i— Jno 72 Om
. [6] X, 9% 9%,
= Bzi(ri)v I = 11 21 L.,y afl afz afm
DfT(X) = | a%, 9X%, 9%, |, [12]
wherem is the total number of control sample points, ane- . : R :
(ri, 6;, z). Equation [6] can be reranged as a system of the of, ot 9w
homogeneous equation L X, 9X, 9 X
J (A/m) Error (ppm) Bz (T)
1 100 1.4
0.8
50
0.6 12
04 0 1.0
02 -50
ol 0.8
-100
-0.2 0.6
-0.4 o -150 o v
0 0.5 200 . 5 o z(m) -1 -0.5 0 0.5
(a) (b) (©)

FIG. 4. A solution for the asymmetric magnet of design 1: (a) the normalized current density distribution, (b) the error within the ds¥-arishend
(c) the normalized, field distribution onzZ-axis.
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FIG. 5. Solutions for the example asymmetric magnets: (a) and (b) cross section of compact asymmetric magnet 1 and 2, respectively. Coils that
are counter-wound to the others; (c) and (d) the error over the complete dsv of magnet 1 and 2, respectively. (e) a@dfid)ditstribution pattern relative

to the dsv with 240 A transport current of magnet 1 and 2, respectively.

wherea = 0 is a damp factor, is the identity matrixp is the

decomposition method was used to solvegdoil he solutionx

search direction, and is a parameter that can be found bys obtained wherb(x) =< € is satisfied.
using one-dimensional nonlinear optimization techniques.We first illustrate this method with a relatively uncon-

Equation [10] is ann-dimensional linear system. TheU

strained symmetric magnet example. The current density r
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TABLE 1 v in this case is much smaller than in the symmetric case, t
Asymmetric Magnet Design Results maximum error eventually only converged to about 200 ppr
peak-to-peak within the dsv. However, this solution still pro-

Design 1 Design 2 yides enough information to allow an initial coil pattern to be

Total length (m) 1.2 1o established. Nonlinear optimization or the simulated annealir
Field strength (T) 1.0 1.0 method may then be used to refine the coil structure. It |
Transport current (A) 240 240 interesting to note (see Figs. 2c and 4c) that the princip:
Dsv (cm) impurities in the symmetric design are of even order, while
ig Egggﬂggmimngggmi 3:2;;:3 ﬁ:gg:; those in the asymmetric case possess odd symmetry. '
50 epoch(cm)/Vrms(ppm) 4.0/19.0 8.0/22.0 The continuous current density function shown in Fig. 4a i
Wire length (km) 130 64 clearly oscillating positively and negatively. According to
Wire turns density (cn) 50.0 50.0  these distributions, at leakt= 7 coils are needed for magnet
Peak field in superconductor (T) 8.2 8.0 structure to reasonably approximate the continuous curre

distribution. Each coil has 4 parameters to be determined, tl
coordinates of the center, width, inner radius, and height of tf
quired is shown in Fig. 1. The overall length of the magnet lock. For the convenience of initial design, the same turn
L = 1.5 m, the radius of the free boreRs= 0.6 m, and the density was used for all the coils (0.5 mfj and constant
radius of the dsv is = 0.25 m. Therelaxation factor isy = transport current assumed. The constant target filgh was
0.833. The field point8,; were defined to be of constant valueset to 1.0 T. For the case presented here, the sample poi
within the dsv. The solution was obtained with a maximurtm = 150) evenly spaced over the dsv and including its
peak-to-peak error of about 2 ppm within the dsv along treurface were selected and the algorithm set a target to redt
Z-axis. The normalized current density distribution, the errdine peak-to-peak error within the dsv to less than 10 ppm.
profile, and the normalize®, field distribution are given in  Since the initial values of the coil dimensions and positiot
Figs. 2a, 2b, and 2c, respectively. We note that the curremére determined from a continuous current density profile, w
density has a similar form to that seen by othé&3)( make the assumption that the initial seafere in the domain
As Fig. 2 shows, this approach results in a suitable curresftthe globe minimum. This has been confirmed by runnin
density profile, which generates a homogenddufeld on the several Simulated Annealing algorithms on the initial values t
axis. These results provide a very useful starting point for a ceihsure that they are in the vicinity of the global minimum. The
wound design, in which the field over the complete dsv izonlinear method then descends to the optimal solution. Fu
considered. In the asymmetric case (see Fig. 3) two structutikermore, the current density distributions shown from Fig. -
were designed. The overall length of each magnetlwasl.2 only guarantee the homogeneity of tBe field on theZ-axis
m, the radius of the free bore w&s= 0.5 m, and the radius within dsv. When our nonlinear optimization technique wa:
of the dsv wag = 0.21 m. Therelaxation factors were = used for resizing the discrete coils fBr, generation over the
0.18 andy = 0.26, respectively, corresponding to designs iantire dsv, the solution was, not surprisingly, different from
which the dsv was positioned at either 9 or 13 cm from the etisht when only theZ-axis fields were considered. The solu-
of the coil structure. tions, however, have the same general topology, indicating tl
Figure 4 shows the final result of normalized continuousdvantage of using the initial current density approximatior
current density profile, the error, and tBe field distributions Computation times for asymmetric designs were approx
on theZ-axis of the 10 cm dsv epoch magnet design. Since theately 3—4 min for the current density calculations and up t

TABLE 2
Coil Configurations in Meters

Design 1 Design 2

R1 R2 Z1 Z2 J R1 R2 Z1 z2 J
Coil 1 0.888647 1.019661 0.000000 0.230233 + 0.678349 0.831083 0.000000 0.120118 +
Coil 2 0.556452 0.819145 0.000000 0.033506 — 0.417993 0.622359 0.000000 0.017729 -
Coil 3 0.527031 0.592246 0.259035 0.355951 — 0.500673 0.546588 0.153321 0.213309 —
Coil 4 0.487356 0.524118 0.287825 0.349032 + 0.545729 0.552018 0.314059 0.422412 -
Coil 5 0.555548 0.557867 0.418295 0.602217 — 0.537916 0.542539 0.485078 0.643620 +
Coil 6 0.521077 0.521786 0.615035 0.841080 — 0.523675 0.526570 0.633419 0.845569 +
Coil 7 0.514972 0.523409 0.895588 1.212376 + 0.510686 0.521938 0.872007 1.202192 +
Coil 8 0.593770 0.605756 0.123928 0.135913 +
Coil 9 0.698071 0.701878 0.128102 0.131917 +
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The Compact Asymmetric The Compact Asymmetric
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Y Y
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FIG. 6. The compact asymmetric MRl magnet.

8 h for the block optimization when implemented on an SGI In summary, a hybrid numerical method has been succes
Origin 2000. fully applied to the design of new, compact, asymmetric MR
Figure 5 illustrates the final results for the compact asymrmagnets. This method is flexible and may be applied to ma
metric MRI magnet designs, Table 1 summarizes their propets of other geometries. A design was detailed which allowe
erties, and Table 2 shows the detail configuration of each caid5 cm dsv to begin only 11 cm away from one end of th
for both designs. In all cases, the final,; values on the dsv magnet with overall length 1.2 m. In this magnet, most of th
were calculated using 600 points to ensure over sampling. patient will remain outside the magnet structure allowing sig
While both magnets produce useful fields (see Fig. 5), deHicantly improved physician access and reduced perception
sign 2 is much more economical and is therefore preferredaustrophobia in many cases. We note that in a cardiac exal
This is a consequence of attempting to force the dsv epochiniation, for example, the patient's head would be outside th
be very near the magnet end and results in large cancellatrnagnet structure. While this work has focused on single-lay:
fields and excessive wire lengths. Design 2 has a volume rmgrent densities and coil implementations thereof, the methc
of about 8 ppm over a dsv of 45 cm, the epoch of which is 11i§ extendable to multilayer current densites which may be ust
cm from the end of the magnet. The magnet structure fisr multiple primaries or for shielding windings.
buildable and the peak fields and current densities are within
working limits of NbTi conductors. The energy storage of
design 2 is approximately 5.9 MJ.
A conventional, symmetric magnet of 1.2 4] requires  The authors gratefully acknowledge support for this project from The
only 41 km of wire, the additional wire costs of design 2 beingustralian Research Council.
due to its strong asymmetry. As the dsv moves closer to the
geometric center of the magnet structure the wire costs reduce.
The contour plot of Fig. 5f illustrates the position and purity of
dsv. Figure 6 provides a perspective view of the final magneat M. w. Garrett, J. Appl. Phys. 22, 1091 (1951).
structure. In this figure, darkly shaded coils are counter-woungl M. w. Garrett, J. Appl. Phys. 34, 2567 (1963).
to all others. Itis instructive to compare the asymmetric design, m. w. Garrett, J. Appl. Phys. 38, 2563 (1967).
to a symmetric design of similar dsv size and epoch. A 67 CW. . saint-Jalmes, J. Taquin, and Y. Barjhoux, Rev. Sci. Instrum. 52,
long symmetric system, designed using our approach, requires1501 (1981).
approximately 112 km of wire and has a resultant purity o&. H. siebold, H. Huebner, L. Soelsner, and T. Reichert, IEEE Trans.
about 20 ppnV/ s over a 45 cm dsv. The asymmetric system Magn. 24, 419 (1988).
is thus preferable to this system in both cost and dsv purity. K. Schweikert, R. Kreig, and F. Noack, J. Magn. Reson. 78, 77 (1988).
Asymmetric gradient coils would, of course, be used in theg. H. Siebold, IEEE Trans. Magn. 26, 841 (1990).
asymmetric magnets and potentially there would be a reductiafn . J. Davies, R. T. Elliott, and D. G. Hawkesworth, IEEE Trans.
in the volumetricaB/at exposure and hence in peripheral nerve Magn. 27, 1677 (1991).
stimulation. 9. A. K. Kalafala, |IEEE Trans. Magn. 27, 1696 (1991).
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